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Summary. Sex-linked effective population size (Ne) is 
derived for a variety o f  control populat ion structures 
relevant to normal  diploid and/or ,  more importantly, 
to haplo-diploid species. For equal sex ratio, it is shown 
that the control population structure which doubles 
autosomal effective populat ion size trebles sex-linked 
effective size. For haplo-diploid species where the 
number  of  males exceeds the number  o f  reproductive 
females, several different control structures are de- 
scribed, which tend to increase effective population size 
by about 1/3. These would be suitable for stock 
maintenance o f  honeybees. Directional selection 
programmes employing within-family selection would 
maintain most o f  the minimum drift/ inbreeding prop- 
erties of  these control populations. 
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Introduction 

Random genetic change is inevitable in populations of  
finite size. Control populations (Gowe etal.  1959; 
Latter 1959) are populations set up and maintained in 
such a way as to minimise this random change. 

The rate at which drift / inbreeding 1 occurs is 
inversely proportional to the effective population size, 

1 If population size is constant from generation to generation 
(as will be assumed throughout this paper) inbreeding effec- 
tive population size is equal to variance (drift) effective 
population size (Crow and Kimura, p 361) and factors which 
minimise/maximise rate of drift will have the same effect on 
rate of inbreeding 

Ne, a parameter which relates the number  o f  breeding 
males (M) and breeding females (F) in a population to 
the number  of  breeding individuals (N) in an "ideal", 
random mating, monoecious population with selfing 
allowed. The extension of  this analogy to sex linked 
loci is strained to say the least, given that sex linkage 
and monecity are mutually exclusive. Nevertheless, as a 
means of  relating the rate o f  drift / inbreeding to the 
number  of  breeding males and females in a population, 
the concept is still useful for sex linked loci. 

A general expression for the rate of drift/inbreeding for an 
autosomal locus has been presented by Hill (1972). If no 
constraints are placed on the contribution of parents along the 
four autosomal pathways from one generation to the next, the 
distribution of family size for each pathway is approximately 
Poisson and the general expression reduces to the familiar 
formula due to Wright (1931, 1933, 1969). Ollivier (1973) has 
demonstrated the effects of many different combinations of 
constraints on family size on autosomal effective population 
size. For example, if each male parent contributes exactly one 
son and one daughter to the parents in the next generation 
and likewise for the female parents, then autosomal effective 
population size is doubled relative to the situation of no 
constraints. From the drift/inbreeding point of view, this 
constitutes the most effective control population. 

For sex-linked genes, and for all genes in haplo-diploid 
organisms, there are a number of important differences from 
the autosomal situation. First, there are only three pathways 
for gametes from one generation to the next, namely 1) male 
parent to daughter, mf, 2) female parent to son, fm, and 3) 
female parent to daughter, ff. Secondly, along the mf pathway, 
gene frequency drift can occur only because of sampling be- 
tween individuals. In the other two pathways (as in all four 
pathways for diploid autosomal genes), sampling of genes 
within heterozygotes also contributes to gene frequency drift. 
An expression for rate of drift at a sex linked locus was 
developed by Moran and Watterson (1959) for non-over- 
lapping generations but it is not in a suitable form for the 
purpose of this paper. Pollak (1980) presented the following 
general formula for sex-linked Ne, which is analogous in form 
to Hill's (1972) autosomal formula. For the discrete generation 
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case it is 

1 _ 1 2 a 2 m f + l  (1.1) 
Ne 9M 

F F 2 
+-~F [a2 ff + 2 ( ~ )  coy (fro, f f )+  ( ~ ) a Z f m +  11 

where a2ff= variance in number of gametes transmitted by 
females to daughters who become parents in the next gener- 
ation and a2fm and a2mf are similarly defined for the other 
two pathways, coy (fro, ff) = covariance of numbers of male 
and female progeny produced by females. 

In most situations there is no correlation between the numbers 
of sons and daughters produced by female parents and we can 
set coy(fro,if)--0, as we have done for all subsequent ex- 
pressions derived from (1.1). 

The aim of  this paper is to derive formulae for sex- 
linked effective population size from Pollak's general 
formula by a progressive application of constraints on 
family size along the three pathways. Three of these 
formulae will be compared with those obtained by 
Page and Laidlaw (1982), who used a different ap- 
proach. It will be shown that one of their derivations 
(their formula 5) is erroneous, due to a misunder- 
standing of constraints which arise in the mf  pathway 
when a system of  queen-daughter replacement is 
employed. 

Application of constraints on family size 

a) The mf pathway 

1. I f  each male has an equal expectation of producing a 
daughter, we can approximate the variance of family 
size by the Poisson variance, which is strictly valid only 
when the number of  parents is not fixed. However this 
approximation can be shown to give results accurate to 
second order of  1/M and 1/F. Using this approxima- 
tion, the mean and variance of daughter number per 
father is F/M. 
2. I f  M > F, then it is not possible for all male parents 
to produce a daughter. I f  those which do produce a 
daughter are constrained to produce only one, then 
F /M will produce 1 daughter and ( 1 - F / M )  will 
produce 0 daughters. There will be a Bernoulli dis- 
tribution of daughter number, with variance (F/M) 
(1 - F/M) (Gowe et al. 1959 for autosomal example). 
3. If  M = F (or nM--F,  where n is an integer constant), 
then all male parents may be constrained to produce 
exactly 1 daughter (or exactly n daughters). In this case, 
number of  daughters per male parent is constant and 
variance of family size is zero. 

b) The fm pathway 

Constraints are applied as for the mf  pathway. The 
Bernoulli variance will apply when F > M, and female 
parents are restricted to contributing a maximum of 

one son to the next generation. For zero variance of 
family size to be possible, either F = M  or n F = M ,  
where n is an integer constant. 

c) The f f  pathway 

1. Since the number of  females is constant from genera- 
tion to generation, each female must produce one 
daughter on average. I f  no constraints are placed on 
daughter number and all females have an equal chance 
of contributing to the next generation, then the dis- 
tribution of daughter number is approximately Poisson, 
with mean and variance equal to 1. 
2. I f  each female is constrained to contribute exactly 
one daughter to the next generation, then clearly the 
variance of daughter number is zero. 

Sex linked effective population size, with specific 
constraints on family structure 

All possible combinations of variances of family size, 
resulting from applying the abovementioned con- 
straints, have been substituted into Formula 1.1, to 
produce the 16 values of  1/Ne presented in Table 1. 
Many of the combinations of  constraints on family size 
presented in Table 1 are unlikely to occur in practice. 
In particular, cases 11 and 13 are impossible for 
honeybees because of their mating system and would 
be extremely difficult to apply even in other organisms 
where more control could be exerted over the mating 
system. Those of most significance in reality are 
marked with a (*). 

Results of general significance from Table 1 

Case 1 provides a baseline for comparison with the 
other partly or wholly controlled populations, since no 
constraints are applied to family size. In this case 

9FM 
Ne(1) - 4M + 2F (2.1) 

which agrees with Wright's (1933) inbreeding deriva- 
tion and his (1939) variance derivation, and Page and 
Laidlaw's (1982) formula 3. 

By contrast, case 16 represents a rigidly controlled 
population with zero variance of gamete contribution 
along the three pathways, and this results in 

9MF 
Ne~ = M + F " (2.2) 

Compared with Case 1, setting M = F ,  the effective 
population size in this latter case is three times greater. 

Wright (1939, 1969) derived the limiting values of 
effective population size for Formula 2.1 for F much 
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Table 1. Effect of schemes for controlling gamete choice on sex linked effective population size 

319 

Mode of choice Case Distribution and variance of family size for sex 
ratio of gametes 

Path 
ff 

Path Path 
mf fm 

1 / NE 

Completely 1 * Poisson Poisson 
random [F/M] [M/F] 

Partly 2" Poisson Poisson 
random, IF/M] [M/F] 
partly 3 Poisson Bernoulli 
constant [F/M] [(1-M/F)M/F] 
number 4 Poisson Bernoulli 

[F/M] [(1-M/F)M/F] 
5 Constant Poisson 

[0] [M/F] 
6 Constant Poisson 

[0] [M/FI 
7 Constant Bernoulli 

[0] [(1-M/F)M/F] 
8" Constant Bernoulli 

[0] [(1-M/F)M/F] 
9 Poisson Constant 

[F/M] [01 
10" Poisson Constant 

IF/M] [01 
11 Bernoulli Poisson 

[(1-F/M)F/M] [M/F] 
12 Bernoulli Poisson 

[(1-F/M)F/M] [M/F] 
13 Bernoulli Constant 

[(I-F/M)F/M] [0] 
14" Bernoulli Constant 

[(1-F/M)F/M] [0] 
15 Constant Constant 

[0] [0] 
Completely 16" Constant Constant 
constant [0] [0] 

Poisson 
[1] 

Constant 
[0] 
Poisson 
[1] 
Constant 
[0l 
Poisson 
[1] 
Constant 
[0] 
Poisson 
[1] 
Constant 
[0] 
Poisson 
[1] 
Constant 
[0] 
Poisson 
[1] 
Constant 
[0] 
Poisson 
[1] 
Constant 
[0] 
Poisson 
[1] 
Constant 
[01 

Any 2 + 4  
9M 

Any 2 + 3  
9M 9F 

F > M  2 3 
9-M+ 9F 

F > M  2 2 
9--M+ 9F 

F = n M  2 2 § 
n ~  1 9M 9F 
F = n M  2 1 + 
n~_ 1 9M 9F 
F = n M  2 1 + 
n>  1 9M 9F 
F = n M  2 
n>  1 9M 
M = n F  1 4 
n~_ 1 --9M + 9F 
M = n F  1 3 4 
n ~  1 9M 9F 
M > F  4 

9F 
M > F  3 

9F 
M--nF -1 4 + 
n>  1 9M 9F 
M = n F  -1 3 
n>  1 9M 9F 
M = F  1 2 4 

9M 9F 

M = F  I 1 
9M 9F 

greater than M and vice versa. In  the former case Ne 
approaches  4 .5M and in the lat ter  Ne  approaches  
2.25F. It is noteworthy,  but  apparen t ly  coincidental ,  
that the constraints on family size o f  case 8 o f  Table  1 
produce an effective popu la t ion  size o f  4.5 M, provided  
only that F = n M  and  n is an integer greater  than 1. 
Likewise the constraints of  case 11 give rise to an 
effective popula t ion  size o f  2.25 F for any M > F. 

R e s u l t s  re levant  to  s e x  l inked  g e n e s  in d o m e s t i c  a n i ma l s  

We have a l ready seen, for M - - F ,  that  a popu la t ion  
structure which doubles  au tosomal  effective popu la t ion  
size, trebles sex l inked effective popula t ion  size. How- 
ever, in popula t ions  o f  domest ic  animals,  the number  o f  

breeding females always exceeds the n u m b e r  o f  
breeding males. Appl ica t ion  of  the Gowe  et al. (1959) 
control popula t ion  structure, in which each male  paren t  
produces exactly one son and exactly F / M ( - - n )  
daughters and each female paren t  produces  exactly one 
daughter,  with M random females producing  one son 
and F -M producing  no son, in case 8 of  Table  1 results 
in a sex-l inked effective size o f  

Ne(8) = 4.5 M. (2.3) 

For  a female to male  sex ratio o f  n = 2 ,  the control  
effective popula t ion  size is twice that  of  a case 1 
populat ion.  However,  for increasing sex ratio n, the 
effective size in case 1 asymptot ica l ly  approaches  4.5 M. 
The Gowe et al. type of  control  structure thus has little 
influence on sex l inked effective size when the number  
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of males is very small relative to the number of  females, 
as for example in artificial insemination programmes. 

Results relevant to haplo-diploid organisms 

Honeybees, Apis mellifera, are the only haplo-diploid 
organisms in which it may be economically advanta- 
geous to establish control or minimum drift popula- 
tions. Discussion will be restricted to this species, 
although the results are valid for any haplo-diploid 
organism. 

For male bees, the act of  mating is fatal. Queen 
bees, on the other hand, mate many times, so clearly 
M > F, in contrast to the situation in diploid species of 
domestic animals. Single inseminations via artificial 
insemination (A.I.), although possible, are not practi- 
cable, and multiple insemination, both in nature and in 
controlled matings, is the rule. Consequently, exact 
paternity of  daughter queens cannot be controlled and 
it is difficult to apply constraints to the mf  pathway. 
However, it is easy to apply constraints to the ff and fm 
pathways and partial constraints may be applied even 
to the mf  pathway. We will now consider progressive 
application of these constraints. 

If  each queen is constrained to produce exactly one 
daughter, but contributions along the fm and mf  
pathways are random, then the effective population size 
is derived in case 2 of  Table 1 as 

For M =  nF, the efficiency of this scheme relative to 
case 1 is 

4 n + 2  
Ne~176 3n + 1 (2.7) 

which approach 4/3 for large n. 
The current practice in artificial insemination 

programmes for bees (Laidlaw 1979) is to collect semen 
from a sample of drones just before insemination of each 
virgin queen, rather than to prepare it in bulk as 
described above. This technique allows for an addi- 
tional partial constraint to be applied to family size 
along the mf  pathway. I f  the sample of drones is chosen 
randomly from the M =  nF available, one only of the 
random drones will produce a single daughter (if the ff 
pathway is constrained) and the rest will produce no 
daughters, as opposed to the previous situation where a 
drone could conceivably produce anything from 0 to F 
daughters. Now, the Bernoulli variance of family size is 
appropriate for the mf  pathway and the effective 
population size is derived in case 14 

9MF 
Ne(14) 3 M -  F " (2.8) 

The efficiency of this design relative to case 1 is 

4 n + 2  
Ne04)/Ne~ = 3 n -  1 ' (2.9) 

9MF 
Ne(2) - 3 M + 2 F " (2.4) 

The efficiency of this scheme relative to case 1 for 
M = x F  (where x, the sex ratio, is not necessarily 
integral) is 

4 M + 2 F  4 x + 2  
Ne(2)/Ne(I) - 3M + 2F 3x + 2 (2.5) 

which approaches 4/3 for large x. 
If  each queen contributes one daughter queen and 

exactly n drones to the next generation, then variance 
of family size along both the ff and fm pathways is 
zero. I f  semen is collected from all M ( = n F )  drones 
and thoroughly mixed (e.g. by the technique of 
Kaftanoglu and Peng 1980a, b) before samples are 
used to artificially inseminate each of the virgin daugh- 
ter queens, then each male will have an equal chance of 
contributing along the mf  pathway. The variance of 
family size along this pathway will be the Poisson value 
of F/M. The effective population size for this set of 
constraints is derived in case 10, Table 1, and 

9MF 
Ne~176 3 M +  F " (2.6) 

For small values of sex ratio, this system is more 
efficient than case 2 and case 10, but for increasing n, 
the three methods approach the same efficiency. For a 
sex ratio likely to apply in practice n = x = 8 ,  the 
efficiencies of  case 2 and case 10 relative to case 14 are 
88.5% and 92%. Clearly if constraining the fm and mf  
pathways involves additional costs or management 
difficulties, it is unlikely to be justified in practice. 

Page and Laidlaw (1982) obtain their formula 5 for 
a situation of queen-daughter replacement and random 
mating, with either random selection of drones for 
artificial insemination or open mating, presumably in 
an isolated mating yard. This procedure will lead to a 
Bernoulli variance of family size along the mf  pathway, 
since the drones are restricted to producing one daugh- 
ter at most or none at all. The relevant effective 
population size is presented in case 12 Table 1. If  
semen for artificial insemination were pooled and 
mixed from all drones to be used in matings, then 
o 2 m f =  F /M (Poisson), as in case 2 Table 1 and then 

9MF 
N e =  

3 M + 2 F  

as in their formula 5. 
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Discussion 

The application of constraints on family size along the 
three pathways of inheritance of sex linked genes leads 
to substantial increases in effective population size. The 
most efficient design for increasing autosomal effective 
population size is that in which each male parent 
produces a son and a daughter and each female parent 
likewise contributes a son and a daughter to the next 
generation. This design doubles autosomal effective 
population size. Concomittantly, this design will lead to 
a tripling of sex linked effective population size (for- 
mulae 2.1 and 2.2). 

The equivalent design for haplo-diploids, in which 
each male parent produces one daughter, and each 
female parent contributes one son and one daughter, 
cannot be used in honeybees since single drone 
inseminations are not practicable. Singly inseminated 
queens are not capable of supporting full strength 
colonies. 

Several designs for control populations of honeybees are 
.possible, which for large male-to-female sex ratios tend to 
increase effective population size by about 1/3 (cases 2, 10 and 
14 in order of increasing efficiency) (Page and Laidlaw 1982). 
The more efficient designs may involve greater cost or 
management difficulties for little increase in Ne, and choice 
among them would have to be made on criteria other than 
efficiency. For example, the bulk mixing of semen in cases 2 
and 10 would eliminate the potential problems of incomplete 
mixing of semen within the spermatheca and non-random 
expulsion of excess semen (Oldroyd and Moran, in prepara- 
tion) which might occur with case 14, where semen doses are 
not homogenised. 

Selection programmes which severely restrict the number 
of breeding queens maintained in a closed line of honeybees 
are not feasible because of problems caused by the sex allele 
system (Page and Marks 1982). Briefly, inbreeding increases 
the probability of homozygosity for balanced lethal sex alleles 
and eventually leads to such a decrease in colony viability that 
extinction of colonies, and eventually the line, becomes likely. 
Page and Marks (1982) have established by computer simula- 
tion the constraints on number of queens to be maintained in 
closed lines when male and female replacements are chosen 
randomly. They have not considered the effects of selection 
nor of constraints on family size. 

Within-family selection is not a particularly efficient 
form of selection, but it does have many of the 
minimum drift advantages of control populations and 
may be the most appropriate type o~f selection for 
honeybees, given the sex allele problem. It is of interest, 
therefore to ask how the effective population size 
formulae presented in this paper apply to within-family 
selection programme in bees. A design for such a 
programme as follows: 

1 f f  pathway. Each of the F queens produces q 
daughters, all of  which are inseminated with semen 
from a homogeneous pool. Colony performance is 
evaluated and the best 1 of  the q daughters is selected. 

Each queen contributes exactly one daughter to the 
next generation and therefore ~r ~ i f=  0. 

2 fm pathway. Each of the F selected queens contrib- 
utes exactly a x q drones (where a is the imsemination 
factor and equals the equivalent number of  single drone 
semen doses used in each artificial insemination), from 
which semen is collected and pooled. Since each queen 
contributes exactly the same number of sons, o ~ fm = 0. 

3 mfpathway. There is no basis for selection among the 
M=a.q .F  drones. Their contribution to the next 
generation of queens would be completely random 
(o2mf= F/M), except that the within-family selection of 
replacement daughter queens will cause over or under- 
representation of daughters of  particular drones. Hence 
the variation of family size along this pathway will be 
greater than the Poisson value. 

Only the case in which all semen is pooled and 
homogenised is considered. This is because selection 
among queens will be based on colony performance. 
The performance of  a colony depends equally on 
contributions by both the queen and the drones to the 
worker population. Semen mixing would standardise 
the drone contribution to colony performance, and the 
differences between colonies should be due only to 
differences in breeding value between queens as well as 
random environmental deviations. The only difference 
between this scheme and control population case 10 is 
that the variance of family size along the m f  pathway is 
greater than the Poisson value and thus formulae 2.6 
for Neo0 ) will overestimate effective population size. 
The magnitude of this overestimation is difficult to 
gauge. However, for a--8,  q--3  and F--50, there will 
be 1,200 drones represented in the semen pool. The 
probability of two daughters of  the same drone even 
being present among the 150 unselected daughters is 
negligibly small, although the probability of choosing 
daughters of brother drones is more substantial. 

Thus for honeybees, within-family selection of this 
sort will produce an effective population size which 

9MF 
approaches the Neo0 ) value of F + 3----'--M-" Of  course, if a 

1:1 sex ratio were possible in bees, within-family 
selection could be carried out such that the Ne(16) value 

9MF 
of-M---~ff could be maintained. The effective popula- 

tion size would then be 2.25 times the total number of 
breeding males and females. 

Response obtained to such a within-family selection 
scheme in honeybees can be predicted from the fol- 
lowing formula (Moran and Oldroyd, in preparation). 
(see Falconer 1981, p 211 for diploid case). 

2 r n - 1  
R = -~- i O'p h2(1 - r )  n ( 1 -  t) 
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where 
% = phenotypic  s tandard deviat ion 
h 2 = heri tabil i ty (narrow sense) 
r = relat ionship between family members  
n = number  of  family members  
t = correlat ion of  phenotypic  values o f  members  of  

families, and equals rh  2 where no common 
envi ronmenta l  factors boost  the correlation.  

The factor o f  2/3 arises because zero selection 
pressure can be exerted for characteristics o f  economic 
impor tance ,  such as honey product ion,  along the mf  
pathway.  It is also based on the assumpt ion that equal  
selection pressure is appl ied  along the fm and ff 
pathways;  a s i tuat ion which would arise i f  the selected 
queens were used both as queen mothers  and  drone 
mothers. The relative efficiency o f  within-family selec- 
tion to a convent ional  scheme is de te rmined  by the 

V n - 1  
factor (1 - r) n (1 - t-------~ and will be a round  75 % or less 

depend ing  on family size and heritabil i ty.  
Convent ional  mass selection programmes  lead to a 

more rap id  rate o f  inbreed ing /d r i f t  which is likely to 
lead to a more  rap id  b reakdown of  the theoretical,  
predic ted responses to selection. Within-family  selec- 
tion avoids the increased inbreed ing /dr i f t  due to in- 
creased variance in family size, but  at the cost of  a 
decrease in the rate o f  response to selection. Given the 
par t icular ly  adverse consequences of  inbreeding in 
honeybees  associated with the sex allele system, within- 
family selection is a necessary compromise.  
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